Low Impact Development

An innovative, ecosystem-based approach to land development and stormwater management

Why We Need Low Impact Development

To better protect our:

Streams

 Fish and wildlife habitat

 Watershed hydrology

Drinking water

Water quality

To reduce infrastructure costs

To make our communities more attractive

Natural Conditions

Developed Conditions

Primary Goal of LID

Design each development site to protect, or restore, the natural hydrology of the site so that the overall integrity of the watershed is protected. This is done by creating a "hydrologically" functional landscape.

Basic LID Principles

- 1. Conserve natural areas
- 2. Minimize development impacts
- 3. Maintain site runoff rate
- 4. Use integrated management practices
- 5. Implement pollution prevention, proper maintenance and public education programs

1. Conserve Natural Areas

- Conservation of drainages, trees & vegetation
- Land use planning
- Watershed planning
- Habitat conservation plans
- Stream & wetland buffers

2. Minimize Development Impacts

- Reduce storm pipes, curbs and gutters
- Preserve sensitive soils
- Cluster buildings and reduce building footprints
- Reduce road widths
- Minimize grading
- Limit lot disturbance
- Reduce impervious surfaces

3. Maintain Site Runoff Rate

- Maintain natural flow paths
- Use open drainage
- Flatten slopes
- Disperse drainage
- Lengthen flow paths
- Save headwater areas
- Maximize sheet flow

4. Integrated Management Practices

- Small-scale stormwater controls
- Distributed throughout site
- Maintain flow patterns, filter pollutants and re-create or maintain hydrology

Common Integrated Management Practices

- Disconnectivity
- Bioretention
- Open Swales
- Permeable and Porous Pavements

- Green Roofs
- Soil Amendment
- RainwaterHarvesting
- Reduced
 Impervious Surface

Disconnectivity

Retrofit of 1-acre parking lot using bioretention

Seattle's Street Edge Alternatives Program

After Completion - January 2001

Permeable Pavement

Green Roofs

Planter Boxes

Soil Amendment

Soil aeration machine

Development at Redmond Ridge, where soils were amended to a depth of 12 inches.

Rainwater Harvesting

Create a Hydrologically Functional Lot

LID rebuilds ecological functions piece by piece.

Cumulative Beneficial Impacts of LID Techniques

Tree conservation • Rain gardens
Narrower streets • Open drainage
On-lot detention storage and infiltration

Comparing LID and Conventional Development

Conventional Development

LID Subdivision

Philadelphia Study

Conventional Approach

LID Design

LID Implementation

- Identify and develop applicable regulations and requirements
- Use drainage/hydrology as a design foundation
- Allow designs that reflect conservation plans
- Reduce site imperviousness and minimize directly connected impervious areas
- Use sustainable integrated management practices
- Develop pollution prevention, maintenance, public outreach and education programs

Summary

- Development and stormwater runoff have degraded streams, fish habitat and water quality in Puget Sound.
- LID is a new approach to land development and stormwater management that helps protect water resources and watershed hydrology.
- We're gaining a better understanding of how LID can be used to protect the environment, reduce costs and make our communities more attractive.